Uranium Mining and the Health of Communities

2018 Report

Jonathan M Samet, MD, MS	Meghan Buran, MPH
Dean and Professor	Senior Professional Research Assistant
Colorado School of Public Health	Colorado School of Public Health
ion.samet@ucdenver.edu	meghan.buran@ucdenver.edu

1 2 3			
4			
5			
6			
7			
8			
9			
10			
11 12			

Introduction

15 This report addresses the health and environmental consequences for the communities close 16 enough to sites of mining, milling, and processing of uranium to be placed at risk for adverse 17 health consequences. While the dangers of underground mining for miners have been well documented for over a half-century¹, less attention has been focused on the community 18 19 consequences of the extractive end of the uranium fuel cycle (Figure 1). In this report, we 20 present findings of a literature review on research related to community health and uranium 21 mining, as well as providing an estimate of the numbers of people at risk for exposure because 22 of living adjacent to uranium mines, mills, or other facilities. A future report will address the 23 impact of uranium mining on the health of the millions who have worked in underground and 24 open pit mines.

25 Uranium Production and the Nuclear Fuel Cycle

26 Uranium is the feed stock for making nuclear weapons and for fueling nuclear reactors. Mining 27 of uranium for these purposes began in the 1940s, but uranium-containing ores were mined 28 earlier for other uses, such as the extraction of radium for therapeutic and scientific uses, and gold and other ores may contain uranium.² While the geology of uranium is complicated, 29 30 uranium deposits exist in many countries worldwide and it has been mined in most continents. 31 Historically, uranium mining has been most prominent in the western United States, Canada, 32 Eastern Europe, parts of Africa and Asia, and Australia. (Figures 2a and 2b). The uranium-33 containing ore is extracted through surface or underground mining and also by in-situ recovery, 34 which uses chemical solutions to leach out the uranium underground. Typically, the ore is

35 milled and the uranium extracted near the site of mining and then processed further at another36 location.

37 The uranium fuel cycle begins with the recovery of naturally containing uranium and ends with 38 disposal of the by-products of utilization, such as spent fuel rods from nuclear reactors (Figure 3)³; of course, uranium is also mined for the production of nuclear weapons, but the initial 39 40 steps are similar. In this report, the focus is on the initial components of the cycle, i.e., those 41 involving mining, milling, and further processing of the extracted uranium (Figure 1). Across the 42 mining, processing, and utilization of uranium, there are a number of points at which the 43 environment can be contaminated and human health placed at risk. For uranium miners, the 44 greatest threat is posed by the radioactive gas radon and its radioactive progeny or "daughter 45 products," which cause cancer through cell-damaging alpha decays (Figure 3). The millers are 46 exposed to radon progeny, uranium itself, and the chemicals involved in the extractive 47 processes.

48 Turning to exposures to communities, particularly those in proximity to uranium-handling 49 facilities, exposures might come through pathways involving tailings piles, waste water ponds, 50 and repurposing of contaminated materials for building purposes. For communities, potentially 51 harmful radiation exposures come from the spread of dust from tailings piles into agricultural 52 and grazing lands, water, and residences; and contamination of agricultural products and livestock that are in contact with tailings.⁴ Tailings have also been used as fill under dwellings 53 and for road construction.⁴ Radon exposure could be increased by contamination of outdoor 54 55 air from uranium-containing materials or of indoor air by tailings used in construction. Breaches

of uranium mill tailings ponds have also occurred; for example, the 1979 breach at the United
Nuclear Corporation's Church Rock facility dumped massive quantities of solid and liquid waste
into the Rio Puerco in the US State of New Mexico.⁵

59 Worldwide production of uranium has peaked and valleyed since its extraction began; from the 60 1950s, the demand steadily increased and then leveled off around 1990, before surging again 61 around 2008 when nuclear power regained favor because of concerns about greenhouse gas emissions and climate change.⁶ Mining of uranium continues today to supply the 444 62 63 operational nuclear plants with 63 more under construction.⁷ While Europe and North America 64 have contributed the greatest amount to the cumulative uranium produced, accounting for 65 over 30% each, the present production now comes from Kazakhstan (39%), Canada (22.5%), Australia (0.1%), Niger (0.05%), Namibia (0.05%), and Russia (0.04%) with the remaining 38.26 66 % coming from many additional countries.⁸ 67

Over the millenia, mining of all types has caused environmental damage. In the specific case of uranium mining, the circumstances of the Cold War and the nuclear arms race set the context for the community consequences in the past and at present. With the United States and the Soviet Union, in particular, racing for nuclear hegemony, uranium was mined with limited attention to the health consequences for the miners and for the populations exposed through extraction and processing. Efforts have since been directed to clean-up some of these sites, such as through the Uranium Mill Tailings and Recovery Act (UMTRA) in the United States.

Particularly concerning is the legacy of uranium mining during the Soviet era carried out in
Central Asia, including the countries of Kazakhstan, Kyrgyzstan, Usbekistan, and Tanjikstan

(Figure 4).⁹ The mines were both open pit and underground, and tailings and other wastes
have been left in many locations, some near inhabited areas.

79 Radiation Exposures to Communities

80 A key concern with regard to communities is possible exposure to radiation because of 81 proximity to mining and ore-handling facilities. The exposures arise primarily from the 82 potential for contact with uranium and its decay chain. Uranium isotopes decay through 83 several series (Figure 5) that involve the release of inert, radioactive gases, primarily radon 84 (from radium) and thoron (from thorium). In the mines, these gases diffuse through the air of a 85 mine (or are absorbed into water) and contaminate the air breathed by underground workers. 86 In outdoor air, the concentration of radon, which is naturally present, might be increased if 87 there were extensive contamination near to places where people live and work. Such increases in radon concentration have been documented in some locations. Focusing on radon, the gas 88 89 has a relatively brief half-life and decays into a series of decay products (radon progeny or 90 radon daughters). The radon progeny include two solid, radioactive polonium isotopes, which release alpha particles as they decay. As a reminder, an alpha particle is charged and has a high 91 92 mass, equivalent to the helium nucleus (two neutrons and two protons).

When these alpha decays occur within the lung, the alpha particles can reach the nuclei of the cells lining the lung and damage the cells, including the DNA in the nuclei.¹ How the radon progeny reach the lung has been well worked out. Unlike gaseous radon, the progeny are solid and form small clusters, attaching to water molecules and other small particles. Underground workers and exposed community members inhale the progeny, which may deposit on the lining

of the lung. There, when an alpha decay occurs, the cell nuclei are within the range of the
alpha particles. As the alpha particles pass through the cells, irreparable damage may occur
that ultimately leads to the development of lung cancer. The decay series extends through
several long-lived radionuclides, called "internal emitters", that can remain in the body
following inhalation or ingestion and result in radiation exposure that originates within the
body. Gamma exposure may also result from proximity to radioactive tailings piles.

104 *Purpose of this Report*

105 This report addresses community exposures resulting from uranium mining and milling 106 activities and the scope of the at-risk population, considering the legacy of decades of uranium 107 extraction as well as contemporary exposures. The report also includes a systematic review of 108 studies that have addressed exposures to nearby communities and the health risks associated 109 with such exposures. Finally, we use the databases of Pure Earth's Toxic Sites Identification 110 Program (TSIP), the World Nuclear Association, and other entities to estimate the numbers of 111 persons at risk from exposures to persons residing adjacent to current and former uranium mining and milling sites.^{10,11} 112

We do not consider community exposures at the more distal end of the uranium fuel cycle from nuclear power generation or weapons production facilities where communities might be affected by both "routine" and sporadic releases of radioactivity, by disasters, and by contamination from abandoned or inactive sites. Previous Green Cross reports have addressed the consequences of the Chernobyl and Fukushima disasters.¹²

Methods

119 Uranium Mining and Community Health Effects

120 We conducted a systematic review of the available literature to examine the effects of uranium

121 mining on the health of surrounding communities.

122 Search Strategy

Key word searches were conducted on PubMed and Google Scholar using a series of relevant search terms (Table 1). We also utilized the TSIP database to identify reports and publications related to identified uranium sites worldwide.¹⁰ Search results were limited to papers available in English; no date restrictions were placed on the searches. The searches were carried out between April 12, 2018 and April 30, 2018. For Google Scholar, only the first 50 results of each search, sorted by relevance, were reviewed because of the lack of specificity of the search engine, compared with others used.

130 Study Selection

Initially, publication titles and summaries were scanned for relevance to uranium mining and milling and effects on surrounding communities. We did not include studies of uranium exposure in the general environment, per se; rather, we included studies that specifically examined uranium exposure in areas surrounding current and former uranium mining and milling sites. Duplicates were removed. Publications eliminated included those specific to uranium miners' health outcomes, non-human studies, dissertations and theses, publications found to be outside of the scope of this review, any publication for which no full-text article

138 could be obtained, and articles that were not in English. Thirty-seven publications were

accepted for full-text review. Of the thirty-seven publications accepted for full-text review,

sixteen publications were accepted for inclusion in this report.

141 Data Abstraction

142 The accepted publications were reviewed and classified by type of study: studies of potential 143 exposures to communities, cross-sectional studies of exposed populations, and cohort studies 144 of disease incidence and/or mortality. Tables were constructed to highlight the main findings in 145 the accepted studies (Table 2a.-2c.). Study design, study population characteristics, and key 146 findings were reported for studies of exposures to communities (Table 2a.) and cross-sectional 147 studies of exposed populations (Table 3a.). Study design, study population characteristics 148 (exposed and control groups), outcome measure(s), and key findings were reported for cohort 149 studies of disease incidence and/or mortality (Table 2c.). As the included cohort studies were 150 longitudinal, the time period of data collection was included in the table. The data were 151 extracted by Meghan Buran.

152 Estimated Number of People at Risk of Health Effects from Uranium Mining, Milling, and
 153 Processing

We examined available information from various sources--including the TSIP database, the World Nuclear Association, government documents and reports, mining company documents and reports, available maps, and Wikipedia profiles--for historic, active, and proposed uranium mining sites and the communities in their proximity to estimate the number of people at risk of

health effects from exposure to uranium mining and related processes. The general approach
used multiple databases including the TSIP database, and further details are provided in the
results for each type of data.

161

Results

The peer-reviewed literature on uranium mining and related activities and communities is
limited. Three broad classes of studies can be identified: 1) studies on exposures to
communities associated with uranium mining and processing activities; 2) cross-sectional
studies of exposed populations, generally with a control, unexposed population; and 3) cohort
(longitudinal) studies comparing disease incidence and/or mortality in exposed and unexposed
populations (Tables 2a-c).

168 A limited set of cross-sectional studies was identified that provided measures of exposure of 169 communities to radioactivity. Several of the studies are quite small and are limited to single 170 sites. The study in central Asia showed that use of mill tailings in construction could lead to 171 high exposures; such uses of tailings were once common until the radiation hazard was 172 recognized. For example, in the now non-existent town of Uravan, Colorado, tailings were 173 widely used as fill under homes, a practice that extended to towns in the same region of 174 southwestern Colorado. The studies also document the possibility of water contamination and 175 ingestion.

176 Five quite diverse studies were found that addressed various indicators of community health177 impact. The studies included varied indicators of exposure, including place of residence and

178 biomarkers. Two studies were directed at persons residing in the Navajo Nation in the 179 southwestern United States; parts of the Navajo Nation are dotted with small inoperative 180 mining sites and there is concern about long-term implications. A case-control study was 181 carried out to determine whether exposures related to uranium mining were linked to birth 182 outcomes and a second report explored associations of mining with several major chronic 183 diseases. Other studies explored various biomarkers in a cross-sectional framework, 184 Collectively, these studies share the limitation of being primarily cross-sectional and lacking 185 comprehensive exposure assessment.

186 Finally, a number of studies compared disease indicators, including mortality, in exposed and 187 comparision populations (Table 2c). Four of these were industry-sponsored studies carried out 188 in New Mexico and Colorado in the United States by Boice and colleagues. These studies were 189 carried out at a population level and compared mortality over some time period in the study 190 and control communities. In such studies, exposure is based on place of residence and the 191 population size often limits the precision of the studies. These four studies provided "negative 192 findings", i.e., not documenting associations other than increased risk for lung cancer in men, 193 likely reflecting employment as miners or millers. While the design is insensitive, the findings 194 weigh against any large and not anticipated community consequences for mortality, a relatively 195 crude outcome.

A study in Spain examined mortality from hematopoietic malignancies in people residing within
30 km of four nuclear fuel facilities, in comparison to towns located further away. An increase
in risk for leukemia mortality was found, along with increased risk for lung cancer and renal

cancer. A case-control study was carried out in the US state of Ohio to examine association of
 uranium exposure with the autoimmune disease, systematic lupus erythematosus. Significant
 associations were found, although the biological basis for such associations is not clear.

202 Estimated Number of People at Risk of Health Effects from Uranium Mining, Milling, and

203

Processing

204 To estimate the global population at risk from exposure to radiation from uranium mining and 205 milling, we identified sites using multiple sources: Pure Earth's TSIP (Table 3a.), the World 206 Nuclear Organization's lists of global sites (Table 3b.), the U.S. Department of Energy UMTRA 207 Project and the World Nuclear Organization's list of U.S. sites (Table 3c.), and the World Nuclear 208 Association's list of Canadian sites (Table 3d.). Table 3a. provides the TSIP site names, countries 209 of sites, and population estimates made by TSIP investigators. No additional information was 210 included for these sites outside of the information provided by the TSIP investigators. Table 3b. 211 lists global sites that were not included in the TSIP database and identified from the World 212 Nuclear Association website. This table is organized by country and includes the site name, 213 type of site (mine, mill, heap leach, or in-situ-leach), current known operating status, nearest 214 identified communities, and the estimated populations of these communities. Table 3c. details 215 sites within the United States and includes former sites remediated under the UMTRA project¹³, 216 current and planned US mills, current and planned heap leach plants, and current and planned 217 in-situ leach plants. The following information is provided for each: site name, U.S. state, 218 current known operating status, nearest community, and estimated population at risk. Table 219 3d. details sites within Canada, including uranium operating mines and fuel cyles. The following

information is provided for each site: site name, Canadian province, current known operating

status, nearest community, and estimated population at risk.

222 Pure Earth's Toxic Site Identification Program Sites

TSIP sites were identified from the TSIP database by sorting for sites where uranium was listed as the main or secondary environmental pollutant.¹⁰ TSIP site investigators provided estimates of populations at risk from radiation exposure but only in low and middle income countries. All of these estimates were included in Table 3a.

227 Additional Global Sites

228 The TSIP database, while extensive, is not intended to be a comprehensive list of uranium 229 mining and milling sites. Thus, additional global sites were identified through the World Nuclear Association website.⁸ Google searches were used to identify the communities close to 230 231 identified uranium sites. These searches yielded information from government reports, mining 232 company reports and records, as well as Wikipedia profiles. If a community was located for the 233 site, a population estimate was included using the most recently available Census records; 234 typically, estimates were from 2000-2016 depending on the last available records and 235 community participation. Many sites were remotely located and thus an estimate of the at-risk 236 populations was not possible, but the numbers of residents were likely very small. Such sites 237 are so designated in the table. There were also sites for which no information on nearby 238 communities could be found. Sites with no identified at-risk populations were included in the 239 table and marked accordingly.

241 In the United States, former uranium milling sites have been remediated under the UMTRA 242 Act.¹³ Former sites included in the population estimate were identified from the U.S. Energy Information Administration records.¹³ Nearest community information was provided in the U.S. 243 244 Department of Energy Legacy Management fact sheets available for each remediated site.¹⁴ 245 Population estimates were then made using the most recently available U.S. Census records 246 (2000-2016). Current and planned mills, heap leach plants, and in-situ-leach plants were 247 identified from the World Nuclear Association.¹¹ Google searches were used to identify 248 communities nearby identified sites. These searches yielded information from government 249 reports, mining company reports and records, as well as Wikipedia profiles. Population 250 estimates for communities located near the sites were made using the most recently available 251 Census records, which may not have aligned fully with the population at the time of operations. 252 For the United States, these resources likely do not cover the many small mines, often referred 253 to as "dog-hole" mines", that were common in the early days of the industry. There were many 254 small mines on the lands of the Navajo Nation that remain of concern today.

255 Canada

Until recently, Canada was the leading global uranium producer with multiple mines and mills.¹⁵
Canadian sites were identified via the World Nuclear Association.¹⁵ Google searches were used
to identify communities nearby identified sites. These searches yielded information from
government reports, mining company reports and records, as well as Wikipedia profiles. If a
community was located for the site, a population estimate was included using the most

recently available Census records; typically, estimates were from 2000-2016 depending on the
last available records and community participation. Many sites were located in remote
provinces, so that population estimation was not possible. There were also sites for which no
information on nearby communities could be found. Sites with no identified at-risk populations
were included in the table and marked accordingly.

Population estimates were made for people at risk for exposure from existing sites as well as 33
proposed sites for mining that were identified in this analysis. As proposed sites were not yet
actively mining or processing and, in most cases, not yet past the prospecting or licensing
stages, these estimates are made separately. We note that many sites, particularly in the U.S.
and Canada, have been closed or placed on standby with companies citing the falling uranium
prices as a deterrent to production.¹¹

272 Estimates of Exposed Populations

273 Table 4 provides summary counts across Tables 3a-d. It provides the total counts for each 274 category of estimation. For this analysis, we have included sites of all operating statuses, 275 whether currently active or active in the past. For sites currently or previously active, an 276 estimated total of about 6.4 million people globally were at risk from radiation and potentially 277 other exposures due to uranium mining and milling at some point in time. An additional 278 400,000 people globally were estimated to become at risk for exposures if the proposed sites 279 were approved and developed in the future. In many countries, the sites were remote, located 280 hundreds of miles from the nearest identifiable population. Such sites likely pose little risk for 281 the general population. However, there were a number of sites, particularly former sites,

located near and within communities and cities, varying in size from below 50 to over 1.6million people.

284

285

Discussion and Conclusions

This review of the literature and compilation of data on sites of uranium mining and processingaround the world documents the enormous scope of uranium mining worldwide. In the span of

seven decades, the extraction and processing of uranium became a massive global industry.

289 Focusing on the extractive end of the nuclear fuel cycle, the risks to uranium miners,

290 particularly underground miners are well documented: lung cancer, chronic lung disease, and

silicosis, along with the general risks of injury and death faced by all miners. Beyond these well-

292 characterized hazards, communities adjacent to uranium mines and mills and processing

293 facilities are also at risk for exposure.

The review of the literature yielded only a small number of studies that directly addressed exposures sustained by populations from uranium extraction. Several provided evidence related to pathways of exposure, but generally the radiation exposures documented were only a small increment above background. Of concern, however, was the use of tailings in the construction of buildings, potentially leading to unacceptably high radiation exposures. The extent of this practice is uncertain across the many sites of uranium mining and milling, but it has been documented.

301 Estimating the cumulative numbers of community residents exposed to radiation from the 302 extractive end of the fuel cycle is not possible. We reviewed data from diverse sources that 303 covered multiple spans of time. We could not readily align populations to time periods when 304 mines and mills were either operative or non-operative. Additionally, the population counts 305 are cross-sectional and not cumulative; that is, we obtained a population estimate for a 306 particular moment in time, generally the most recent available. Given the boom-and-bust 307 character of the industry, there is a potential that current counts may under-estimate the 308 numbers cumulatively exposed. The determination of the proximity of the mines to nearby 309 populations was uncertain as for many sites information was unavailable regarding the areas 310 immediately surrounding the sites, particularly in some countries, e.g., China and Kazakhstan. 311 Some identifiable communities were 30 or more kilometers away from the mining or milling 312 site. A "safe" distance for exposure from a site can not be specified as we cannot accurately 313 predict the distance that contaminated materials have or will travel through air, water, and 314 construction material.

315 As such, the numbers provided in this report should be considered as providing an 316 approximation of the numbers of people in close enough proximity to uranium mines and mills 317 to be exposed to radiation. The available studies, while limited in number, suggest that 318 incremental exposures above background would likely have been small. However, construction 319 of homes and other buildings would have led to more substantial increases. In some countries, 320 such as the United States, the government funded clean-up of tailings at substantial costs. In 321 others, however, such as countries of central Asia, sites of mining and milling have yet to be 322 remediated, a legacy that should be addressed.

323			
324			
325			

327 Figure 1. The Nuclear Fuel Cycle and the Initial Components of the Nuclear Fuel Cycle¹⁶

500					
507	Figure 5. Uranium 238 Decay Cycle ¹⁸				
508					
509	UBANIUM 2	238 (11238)			
510	RADIOACT	IVE DECAY			
511	typeof	nuclide	half-life		
512	radiation				
513		uranium-238	4.47 billion years		
514	α I				
515	。 🤤	thorium-234	24.1 days		
516	P 👗		1.17		
517	вЧ	protactinium-234m	1.17 minutes		
518	📥	uranjum-234	245000 years		
519	α 🍸				
520	i (thorium-230	8000 years		
521	a 🍸		-		
522	🜔	radium-220	1600 years		
523	a 🗼				
524	_ Y	radon-222	3.823 days		
525	l " 👗	polopium-218	305 minutes		
526	α 🏆	potonitum E10	5.05 mindle5		
527	Ò	lead-214	20.8 minutes		
528	βΫ				
529	i 🌰	bismuth-214	19.7 minutes		
530	β 🐺				
531	🕘	polonium-214	0.000164 seconds		
532	a 🗼				
533	e 🧳	lead-210	22.3 years		
534	^۲ ۲	biemuth_210	5.01 days		
535	6 Y	515mGC1-210	5.01 days		
550	" 🍐	polonium-210	138.4 davs		
520	a 🍸	F			
520	6	lead-200	stable		
223					
540					

 Table 1. Search Terms Used by Database/Search Engine

PubMed
Uranium mining + uranium milling + community health effects
Uranium mining + community health effects
Uranium mining + community health risks
Uranium mining + birth outcomes
Uranium mining + sex ratios
Uranium milling + community health effects
Google Scholar
Uranium mining + Czechoslovaki
Uranium mining + Central Asia
Uranium mining + communities

Study	Design	Population	Key Findings
Stegnar P, Shishkov I, Burkitbayev M, et al. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia.	 Radiation dose assessment Measured indoor ²²²Rn/²²⁰Rn and gamma exposure to ionizing radiation at the investigated uranium legacy sites in Central Asia (note: most sites were partly or not at all remediated) 	 Populations located near uranium legacy sites in Central Asis Sites: Kazakhstan: Kurday Kyrgyzstan: Shekaftar, Minkush, Kadjii Sai Tajikistan: Taboshar, Digmai Uzbekistan: Charkesar and Yangiabad 	 The Minkush site (Kyrgyzstan) had observed individual annual doses of ionizing radiation fo more than 100 mSv, likely due to usage of radioactive materials in homes for insulation purposes. All other legacy sites measured low in radiological risk (all below 30 mSv per year), suggesting that the current radiation doses for these sites do not represent a serious hazard to residents.
Au WW, McConnell MA, Wilkinson GS, et al. Population monitoring: Experience with residents exposed to uranium mining/milling waste. Mutation Research. 1998;405:237-245.	 Environmental exposure assessment (uranium) Measured uranium in environmental samples taken neare mining/milling sites (Panna Maria and Susquenhanna) 	 Populations living near mining/milling sites in Karnes County, TX Exposed N=24 Control N=24 	 Environmental exposure assessments found increased levels of uranium in soil near the mining/milling sites

Table 2a. Studies on potential exposures to communities associated with uranium mining and processing activities

	in Karnes County, TX		
Singh L, Kumar R, Kumar S, et al. Health risk assessments due to uranium contamination of drinking water in Bathinda region, Punjab state, India. Radioprotection. 2012:	 Radiological risk assessment Measured 147 samples of groundwater (the main water source for residents), 6 samples of canal water, and 6 samples of reverse osmosis (RO)-treated water for uranium concentrations 	 Populations within the Bathinda region, Punjab state, India—a region with excess cancer cases 	 Uranium contamination in the drinking water samples was found to be 3.72 times higher than the Atomic Energy Regulatory Board, India (AERB) safe limit. The canal water and RO- treated water had levels within the AERB permissible limits suggesting that drinking water should be treated before consumption to reduce risk from uranium contamination

 Table 2b. Cross-sectional studies of exposed populations

Study	Design	Population	Key Findings
Au www, McConnell MA, Wilkinson GS, et al. Population monitoring: Experience with residents exposed to uranium mining/milling waste. Mutation Research. 1998;405:237-245.	Gross sectional with reference group	 Populations living hear mining/milling sites in Karnes County, TX Exposed N=24 Control N=24 	 Cells from exposed individuals showed more chromosomal aberrations than controls but difference not statistically significant Further analyses showed significant abnormal DNA repair response in exposed individuals
Lourenco J, Pereira R, Pinto F, et al. Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology. 2013; 305: 89-98	 Cross-sectional with reference group Peripheral blood samples were analyzed for: Genotoxic effects Immunotoxicity Trace elements C reactive protein (CRP) Cunha Baixa village, Portugal Abandoned uranium mine 	Total N=84Exposed Group:N=54Inclusion critera = resident ofCunha Baixa village(Portugal); no drinkingproblems, smoking habits, orautoimmune diseases;village resident for > 5 yearsReference Group:N=30Inclusion criteria= resident ofVale de Acores, Mortagua orthe district of Viseu;additional criteria same as	 Significantly higher levels of uranium (H=5.86; df=1; p=0.015) and manganese (F=29.3; df=1,39; p<0.001) were found in residents of Cunha Baixa village The control group had significantly higher levels of zinc (F=11.9; df=1,39; p<0.001) A significant loss of DNA integrity was observed in residents of Cunha Baixa village aged 40 to 60 (F=11.4; df=1,30; p<0.001) and 60 years and older

Thakur H & Sapra PK	Cross soctional study	exposed population	 (F=36.3; df=1,35; p<0.001) High levels of DNA damage were observed in peripheral blood leukocytes of Cunha Baixa residents as well as decreased levels of NK and T cells Household survey
Baseline survey of health status of population in 2006 around a uranium mining site in Jaguguda, India. Radiation Emergency Medicine. 2013;2(1):14-22.	 Assessing the morbidity of residents living in villages within a 5 km radius of a uranium mining site: carcinomas infertility congential abnormalities Data collection: Household survey Health check-up camp Referrals to health centre for final diagnosis Jharkhand, India Jaduguda Uranium Mines 	 Neusenou survey N=34,953 Health check-up camp N=2,693 Referrals for final diagnosis N=1,523 Completed most diagnostic tests N=91 	 1.8% reported a lump 1.4% reported bleeding from any site 3.4% of women reported leucorrhoea 0.3% reported mental retardation 0.7% reported physical deformaties 56 people were referred to confirm cancer 1 case of cancer confirmed 35 people were referred to confirm congenital anomaly o 6 cases confirmed

Wagner S, Burch J, Bottai M, et al. Hypertension and hematologic parameters in a community near a uranium processing facility. Environmental Research. 2010;110:786-797.	Analysis of baseline data from a longitudinal study Assessed potential health effects among residents living within 5 miles of a uranium processing facility • Hypertension • Hematology Data collection: • Hypertension: • Systolic and diastolic blood pressure • Physical diagnosis • Hematology • Differential counts of red blood cells, white blood cells, and platelets Fernald Feed Materials Production Center (FMPC), Ohio • Uranium processing facility	N = 8,216 Inclusion criteria: considered adults at time of 1 st exam; had never worked at Fernald mill; lived within 5 miles of the mill Exclusion criteria: had worked at Fernald mill; under 18 years of age; never lived within 5 miles of the mill; residential address was insufficient for geocoding; incomplete demographic information N= 266 pairs (532	 Cumulative uranium exposure levels: Low = 51% Moderate = 15% High (>0.50 Sievert) = 34% Participants with elevated uranium exposure (compared with those with low exposure) had Decreased white blood cell count (high exp - GM:6.28 thousand cells/µl, p=0.02) Decreased lymphocyte counts (moderate exp - GM:1.90 thousand cells/µl, p=0.3; high exp - GM:1.01 thousand cells/µl, p=0.02) Increased sosinophil counts (OR:1.07; 95% CI: 1.01, 1.13) Mothers who lived near
Skipper BJ, et al. Navajo	· · · · · · · · · · · · · · · · · · ·	individuals)	uranijm tailings or dumps

birth outcomes in the Shiprock uranium mining area. Health Physics. 1992; 63(5):542-51.	Assessed the role of environmental radiation in the etiology of • Birth defects • Stillbirths • Other adverse outcomes of pregnancy Data Collection: • Adverse pregnancy outcomes: • Hospital records • Exposure variables: • Parent and grandparent interviews about time prior to the birth: • Residence within 0.5 miles of a uranium mine, mine dumps, or tailings • Work in uranium mill or mine	Navajos born at the Public Health Service/Indian Health Services Hospital in the Shiprock, NM uranium mining area between 1964- 1981 <i>Index group</i> : infants with congenital abnormalities, stillbirths, and development disorders, as well as infant deaths from causes other than injuries <i>Control group</i> : infants selected were the chronologically nearest normal single birth, matched by sex, mother's age within 5	 were more likely to have an adverse pregnancy outcome OR=1.83, p=0.05 There was a significant association between mothers living near tailings or mine dumps and outcomes such as hip dysplasias and dislocations, cerebral palsy and developmental delay, as well as stillbirths OR=2.71, p=0.03 There was no effect of reported duration of exposure
	 Residence within 0.5 miles of a uranium mine, mine dumps, or tailings Work in uranium mill or mine Living in home built of uranium mine rock Navajo Indian Reservation; Shiprock, NM Uranium mines, mill tailings, mine dumps 	<i>Control group</i> : infants selected were the chronologically nearest normal single birth, matched by sex, mother's age within 5 years, and within two pregnancies if more than prima-gravida	There was no effect of reported duration of exposure
Hund L, Bedrick E, Miller C, et al. A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill	 Baseline of a longitudinal study Examined the relationship between uranium mine waste exposure and: Kidney diseases Diabetes 	N=1,304 residents of the Navajo Nation	Active exposure (exposure of mine/mill workers) produced the strongest exposure associations

waste on the Navajo	Hypertension	
Nation. J.R. Statist. Soc.		
2015; 178(4):1069-1091.	Navajo Nation	
	Uranium mines	

Study	Design	Population	Outcome Measure	Key Findings
Boice Jr JD, Mumma M, Schweitzer S & Blot WJ. Cancer mortality in a Texas county with prior uranium mining and milling activities, 1950- 2001. J Radio Prot. 2003; 23:247-262.	Mortality study Time Period: 1950-2001 Karnes County, TX • 3 uranium mining mills and 40 mines were operated from the 1950s to the 1990s	Exposed group: residents of Karnes County, TX Control group: residents of 4 comparison counties (Frio, La Salle, De Witt, Goliad) matched to Karnes County by sociodemographic variables; population of State of Texas; US population	Mortality caused by: Oesophagoel cancer Stomach cancer Colon/rectal cancer Pancreatic cancer Lung cancer Melanoma/skin cancer Breast cancer (women) Cervical cancer Uterine cancer Ovarian cancer Prostate cancer Urinary bladder cancer Kidney/renal cancer Liver cancer Bone cancer Sone cancer Brain cancer and CNS Thyroid cancer Non-Hodgkin's lymphoma Hodgkin's disease Multiple myeloma Leukemia	 There was no observed increase in cancer mortality for Karnes County residents when compared to similar counties in South Central Texas, the State of Texas, and the US population
Lopez-Abente G, Aragones	Retrospective cohort	Exposed Group:	Mortality caused by:	Excess risk of

Table 2c. Cohort (longitudinal) studies of comparing disease incidence and/or mortality in exposed and unexposed populations

N, Pollan M, et al. Leukemia, lymphomas, and myeloma mortality in the vicinity of nuclear power plants and nuclear fuel facilities in Spain. Cancer Epidemiology, Biomarkers & Prevention. 1999;8:925-934.	study Time period: 1975-1993 Spain	Residents living in 173 towns within a 30 km radius of four nuclear fuel facilities (uranium processing facilities) <i>Reference Group:</i> Residents living in 174 towns within a 50-100km radius of four nuclear fuel facilities	 Leukemias Hodgkin's disease Non-Hodgkin's lymphomas Multiple myeloma 	 leukemia mortality was observed in the vicinity of uranium processing facilities in: Andujar (RR 1.303; 95% CI, 1.03-1.64) Ciudad Rodrigo (RR 1.68; 95% CI, 0.92-3.08)
Lopez-Abente G, Aragones N & Pollan M. Solid-tumor mortality in the vicinity of uranium cycle facilities and nuclear power plants in Spain. Environmental Health Perspectives. 2001;109(7):721-729.	Spatial mortality study Time period: 1975-1993 Spain	<i>Exposed Group:</i> Residents living in 99 towns (chosen randomly from 283 towns) within a 30 km radius of four nuclear fuel facilities (uranium cycle facilities) N=513,248 <i>Reference Group:</i> Residents living in 97 towns (chosen randomly from 275 towns matched to exposed group by population size and sociodemographic variables) within a 50 to	 Mortality caused by: Stomach cancer Colorectal cancer Lung cancer Bone cancer Connective tissue cancer Breast cancer (women) Brain cancer Thyroid cancer Bladder cancer Kidney cancer Ovarian cancer All malignant tumors Latency period: 	 Excess lung cancer mortality was observed in residents living in the vicinity of uranium cycle facilities (RR 1.12, 95% Cl, 1.02-1.25) Excess renal cancer mortality was observed in residents living in the vicinity

		100 km radius of four nuclear fuel facilities	10 years	of uranium cycle facilities (RR 1.37, 95% CI, 1.07-1.76)
Lu-Fritts PY, Kottyan LC, James JA, et al. Association of systematic lupus erythematosus with uranium exposure in a community living near a uranium-processing plant. Arthritis & Rheumatology. 2014;66(11):3105-3112.	Nested case control study Time period: 1990-2008 Fernand, OH	Total N=124 All participants lived within a 5 mile radius of an active uranium ore- processing facility in Fernand, OH for at least 2 consecutive years between January 1, 1952 and December 18, 1984 <i>Case group</i> : confirmed diagnosis of SLE N=25 <i>Control group</i> : no SLE diagnosis; matched on age, race, and sex Exclusion criteria: non- white race, abnormal lab findings N=99	Systemic Lupus Erythematosis (SLE)	 Presence of SLE was associated with high levels of prior uranium exposure (OR 3.92, 95% CI 1.13-13.59; P=0.031) Women with high uranium exposure had increased odds for SLE compared to women with low exposure (OR 7.15, 95% CI 1.52-33.73; P=0.01) Risk of SLE was increased with increased exposure to

				uranium (OR 1.38, 95% CI 1.03-1.86; P=0.03)
Boice Jr JD, Mumma MT & Blot WJ. Cancer and noncancer mortality in populations living near uranium and vanadium mining and milling operations in Montrose County, Colorado, 1950- 2000. Radiation Research. 2007; 167(6):711-726.	Mortality study Time Period: 1950-2000 Montrose County, CO • Uravan mill (uranium)	<i>Exposed group</i> : residents of Montrose County, CO <i>Control group</i> : residents of 5 comparison counties (Mesa, Delta, Montezuma, Logan, Yum) matched on similar population characteristics; population of State of Colorado; US population	 Cancer Mortality Esophagus Stomach Colon/rectum Pancreas Lung Skin Malignant melanoma of the skin Breast Cervix uteri Corpus uteri Ovary Prostate Urinary bladder Kidney Liver and kidney Bone Connective tissue Brain & CNS Thyroid Non-Hodgkin lymphoma Hodgkin lymphoma Multiple myeloma 	 No difference between the total cancer mortality rates in Montrose County and those in comparison counties (RR=1.01; 95% CI 0.96-1.06)

Boice Jr JD. Cohen SS.	Retrospective cohort	N=1.905	 Leukemia Leukemia, CLL Leukemia, not CLL Childhood leukemia Childhood cancer Cancer Mortality 	No significant
Mumma MT, et al. Mortality among residents of Uravan, Colorado who lived near a uranium mine, 1936-84. J Radiol Prot. 2007; 27:299-319.	mortality study Time Period: 1979-2004 (follow-up) Uravan, Colorado • Uranium mill	Inclusion criteria: alive after 1978; lived in Uravan, CO for at least 6 months between 1936 and 1984	 Buccal cavity and pharynx Oesophagus Stomach Colon Rectum Biliary passages and liver Pancreas Bronchus, trachea, and lung Breast All uterine Other female genital organs Prostate Kidney Bladder and other urinary Melanoma of skin Brain and CNS Thyroid and other endocrine glands Bone All lymphatic, 	 elevation of any cancers or causes of death were found for those who lived near the mills However, a significant elevation of lung cancer was found for men who had worked in the mines

	haema	topoietic tissue	
	0	Non-Hodgkins	
		lymphoma	
	0	Hodgkin	
		lymphoma	
	0	Leukaemia and	
		aleukaemia	
	0	Chronic	
		lympocytic	
		leukaemia	
	0	Leukaemia other	
		than CLL	
	0	Multiple myeloma	
	• Pleura	and peritoneum	
	and me	esothelioma	
	Mortality	caused by	
	 AIDS 		
	Diabet	es	
	• Menta	and behavioral	
	disorde	ers	
	Disease	es of the nervous	
	system		
	Cerebr	ovascular disease	
	• All hea	rt disease	
	Non-m	alignant respiratory	
	disease	2	
	0	Bronchitis,	
		emphysema,	
		asthma	

Boice Jr JD, Mumma MT & Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950-2004. Radiation Research. 2010; 174(5):624-636	Retrospective longitudinal cohort study Time Period: 1950-2004 Grants, New Mexico and surrounding counties • Grants Uranium Mill	<i>Exposed group</i> : Cibola and Valencia County residents; residents of census tract regions near the Grants Uranium Mill <i>Control group</i> : general population of New Mexico	 Cirrnosis of liver Nephritis and nephrosis All external causes of death Accidents Suicides Unknown causes of death Incidence of and Mortality due to Cancers 	 Increased lung cancer deaths and incidents were higher among men, seemingly due to working in the mill, smoking, and other factors No increased cancer deaths and incidents were observed for women in the exposed group
--	--	--	--	---

Table 3a. TSIP Global Sites

TSIP Global Site	Country	Total Population at Risk (Estimated by
		TSIP investigators)
Jadugora Radioactive Sites, East	India	1,000
Singhbhum District, Jharkhand, India		
Arlit, Tuareg Region	Niger	110,000
Bathinda District, Punjab	India	5,000
Case INB - Caetit	Brazil	3,000
Chkalovsk hydrometallurgical plant	Tajikistan	5,000
tailing pond		
Chkalovsk Tailing Dump (maps 1-9)	Tajikistan	3,000
Degmai (or Degmay) Radioactive Storage	Tajikistan	10,000
Site, Degmai Village, Sughd Region		
Depósito de residuos de Mina de Uranio	Argentina	25,000
Don Otto, Dpto. San Carlos, Salta		
Dressing Mill (Asybylak)	Kazakhstan	220
Dressing Mill (Asybylak) – 2 nd site	Kazakhstan	45
Ezeiza Atomic Center, Ezeiza, Buenos	Argentina	20,000
Aires Province		
Former Building of KIP Automatics	Tajikistan	2,700
(uranium production adit), Sarymsakli,		
Istiklol (Taboshar) -		
Former uranium mine	Tajikistan	1,500
Romanovka, Baikal	Russia	20,000
School, Iskatol (Taboshar)	Tajikistan	3,760
Shekaftar	Kyrgyzstan	1,000
Sumsar area	Kyrgyzstan	2,140
Tash-Komur	Kyrgyzstan	95

Uranium Mining and Chemical Combine,	Kazakhstan	40,000		
Stepnogorsk town.				
v. Kamyshanovka.	Kyrgyzstan	35		
Village Jaisinghwala, Moga District,	India	5,000		
Punjab				
Mailuu-Suu	Kyrgyzstan	25,000		
Gozien Settlement near Digmay Tailings	Tajikistan	4,200		
Aktau (formerly Shevchenko)	Kazakhstan	10,000		
Charkesar	Uzbekistan	8,900		
Mounana, Haut O Goove Province	Gabon	4,000		
Navoi	Uzbekistan	13,000		
Sillimae	Estonia	20,000		
Taboshar Uranium Tailing Dump	Tajikistan	12,000		
Yangiabad	Uzbekistan	12,000		
Zavadivka Kirovograd	Ukraine	1,000		
Total Estimated Population At Risk: 368,595				

Table 3b. Additional global sites not included in TSIP

Site	Туре	Operating Status	Nearest Community	Estimated Population at Risk
Australia				
Ranger	Mine	Active (will close in 2021)	Surrounded by Kakadu National Park, which is home to a number of Aboriginal people; Jabiru Township is located 8km away from the site	1,581
Olympic Dam	Mine	Active	Nearest towns are Roxby Downs and Andamooka	4,316
Beverly & North	Mine	Suspended	No nearby towns or villages found	
Four Mile	Mine	Active	No nearby towns or villages found	
Honeymoon	Mine	Former	No nearby towns or villages found	
Nabarlek	Mine	Former (rehabilitated)	Fly in/Fly out operation; No nearby towns or villages	
Brazil				
Lagoa Real/Caetité	Mine/Mill	Active	The Lagoa Real U- District extends 1200 km2 and hosts scattered villages	60,000
Engenho	Mine	Active	Could not identify any nearby towns or villages	

			due to lack of available information	
Itataia/Santa Quitéria	Mine	Proposed	The proposed site is located in the Santa Quitéria, Ceará municipality	42,822
Bulgaria				
Buhovo	Mine and Mill	Former (1992)	Site located in Buhovo, Bulgaria. Buhovo is located appx 9 miles from the country's largest city of Sofia	1,685,222
Zvezda	Mill	Former (1992)	Site is located near village of Eleshnitsa. Eleshnitsa is located appx 15 miles from the country's largest city of Sofia and appx 6 miles from Elin Pelin	7,675ª
Upper Thracian Valley	In situ leach plant	Former (1992)	Unable to determine nearby cities or towns	
China				
Yining	In-situ-leach	Active	Yining	542507
Lantian	Mine, heap leach	Active	Unable to determine nearby cities or towns	
Benxi	Mine, block leach	Active	Unable to determine nearby cities or towns	
Qinglong	Mine, heap leach	Active	No known nearby cities or towns	
Fuzhou	Mine, Mill	Active	Unable to determine nearby cities or towns	

Chongyi	Mine, heap leach	Active	No known nearby cities or towns	
Shaoguan	Mine, heap leach	Active	No known nearby cities or towns	
Hengyang	Mine	Suspended	Dongyangdu ^b	
Congo, Democratic Republic				
Shinkolobwe	Mine	Former though unofficially being mined during country's destablization	25km west of Likasi in Katanga	447,500
Czech Republic	1	1		
MAPE Mydlovary	Uranium processing plant	Former (1991) - Remediated	Three villages Mydlovary, Olešník, and Zahájí are situated at proximity of former chemical processing plant of uranium ore, MAPE; also nearby to České Budějovice	94,751
Jáchymov	Multiple mines	Former (1962)	Jáchymov	3,481
Stráž pod Ralskem/Hamr and Brevniste pod Ralskem mines	Mill and Mines	Former (1996) – Under remediation	Stráž pod Ralskem, Hamr pod Ralskem, Brevniste pod Ralskem, and Hamr na Jezeře are nearby	5,281
Horní Slavkov	Multiple mines	Former (1997)	Horní Slavkov	5,503
Příbram	Multiple mines	Former (1991)	Příbramsko	35,147
Rožná	Multiple mines, including Dolni Rozinka, and	Former (2017)	Žďár nad Sázavou	21,467

	processing mill			
France		·		
Gueugnon	Mill	Former (remediated as of 1996)	Located near Gueugnon	8,218
Les Bois Noirs	Mill	Former (remediated as of 1996)	Located near St. Priest la Prugne	448
Le Cellier	Mill	Former (remediated as of 1996)	Located near commune of Le Cellier	3448
L-Ecarpière	Mill	Former (closed 1990- 91)	Within the urban unit of Clisson (consisting of 4 municipalities) and 30 km SE of Nantes	321,264
Bessines	Mine	Former	Bessines ^b	
Saint Pierre du Cantal	Mill	Former	Saint Pierre du Cantal	136
Bertholène	Mill	Former	Bertholène	999
Jouac	Mine	Former	Jouac	211
Lodève	Mine	Former	Lodève	7345
Crouzille Mill Division	Multiple mines	Former	Haute-Vienne department	375856
Gabon				
Franceville-area mines (Mounana, Oklo, Boyindzi, and Mikouloungou)	Multiple mines	Former (1999, 1985, 1991, and 1999, respectively)	Located near Franceville and Mounana	123,005
Germany				
Königstein	Mine	Former (1991), production from mine water treatment	Königstein, Saxony	2128
Niederschlema-Alberoda	Mine	Former (1991)	Aue, Saxony; Hartenstein, Saxony	20886
Pöhla	Mine	Former (1991)	Schwarzenberg	17191
Lichtenberg	Mine	Former (1977)	Ronneburg and Gera	99765

Reust-Lichtenberg	Mine, in-situ leaching, heap leaching	Former (1991)	Ronneburg and Gera ^c	
Schmirchau	Mine, in-situ leaching, heap leaching	Former (1991)	Ronneburg and Gera ^c	
Paitzdorf	Mine	Former (1991)	Ronneburg and Gera ^c	
Beerwalde	Mine	Former (1991)	Ronneburg and Gera ^c	
Drosen	Mine	Former (1991)	Ronneburg and Gera ^c	
Menzenschwand	Mine	Former (1991)	St Blasien	4016
Hungary				
Pécs (Uranvaros)	Multiple mines	Former	Pécs & Uránváros	170347
India				
Tumalapalli	Mine	Active	Located in Tumalapalli village; near KK Kotala; Could not confirm populations of either village	
Kazakhstan				
Uvanas	Mine	Active	No known nearby communities	
East Mynkuduk	Mine	Active	No known nearby communities	
Akdala	Mines; In-situ leach (Inkai)	Active	No known nearby communities	
Inkai and South Inkai	Mines; In-situ leach (Inkai)	Active	No known nearby communities	
Tortukuduk (Moinkum North)	In-situ leach	Active	No known nearby communities	
Moinkum (Muyunkum)	In-situ leach	Active	Sholaqqkorghan	
Kanzhugan (Kyanar and South	Mines	Active	Sholaqqkorghan	10,836

Moinkum mines)				
North and South Karamurun	Mines	Active	Shieli (Shieli district)	78427
Irkol	Mine; in-situ leach	Active	No information available	
North and South Kharasan	Mines	Active	Zhangaqorghan	21339
Zarechnoye	Mine	Active	No known nearby	
			communities	
South Zarechnoye	Mine	Suspended as of 2012	No known nearby	
			communities	
Vostok/Zvezdrioye		Active	No information available	
Semyibai	In-situ leach	Active	No information available	
Central & West Mynkuduk	Mines	Active	No known nearby	
			communities	
Akbastau (Budenovskoye)	Mine, in-situ leach	Active	No known nearby	
	recovery		communities	
Karatau (Budenovskoye)	Mines	Active	No known nearby	
			communities	
Zhalpak	Mine	Active	No information available	
Ulba Metallurgical Plant (Ust	Mill	Active	Oskemen	321 251
Kamenogorsk)				521,251
Ulba Conversion LLP	Mill	Proposed	Oskemen ^d	
Malawi	1	1	1	
Kayelekera	Mine	Suspended	52 km west of Karonga	42555
Mali				
Bala	Mine	Proposed	No information available	
Madini	Mine	Proposed	No information available	
Falea	Mine	Proposed	No information available	
Mauritania				
Tiris	Mine	Proposed	No known nearby	
			communities	_
Mongolia		1	1	
Dornod (Mardai)	Mine	Former (1995)	Mardai (abandoned)	0

Gurvanbulag	Mine	Proposed	No known nearby communities			
Sainshand	Mine	Proposed	Sainshand	28712		
Namibia						
Rössing	Mine	Active	15 km from Arandis	5214		
Langer Heinrich	Mine	Active	No known nearby communities			
Husab	Mine	Active	Swakopmund	44725		
Trekkopje	Mine	Active	No known nearby communities			
Omahola Project (multi-site)	Mine	Proposed	40 km from Walvis Bay	62096		
Niger						
SOMAIR	Mines	Active	Mining towns of Arlit and Akokan ^e	50,154		
COMINAK	Mines	Active	Akokan and Arlit ^f			
SOMINA	Mines	Former	No known nearby communities			
Madaouela	Mines	Proposed	Arlit ^e			
Dasa	Mines	Proposed	30km SE of Imouraren ^b			
Akokorum	Mines	Proposed	40 km northwest of Agadez	118244		
Portugal						
Urgeiriça	Mine	Former	Canas de Senohorim (civil parish)	3509		
Quinta do Bispo	Mine	Former	Mangualde (municipality)	19880		
Prado Velho	Mine	Former	São Pedro do Jamelo e Pínzio	311		
Bica	Mine	Former	Sortelha	444		
Forte Velho	Mine	Former	Panoias de Cim	608		

Fabrica de Sais de Radio	Mine	Former	No information available	
Cunha Baixa	Mine	Former	Mangualde	
			(municipality) ^b	
Romania				
Crucea-Botuşana	Mine	Active	No known nearby	
			communities	
Băiţa Plai	Mine	Former	No known nearby	
			communities	
Avram lancu	Mine	Former	Avram lancu	3317
Dobrei	Mine	Former	56 km from Gătaia	5449
Natra	Mine	Former	Oravița	15265
Ciudanoviţa	Mine	Former	Ciudanoviţa	622
Feldioara	Mill	Proposed	Feldioara	5685
Slovakia				
Novoveská Huta		Former (1990)	Novoveská Huta (village	
			that's part of the town	37326
			of Spišská Nová Ves)	
Johodná (Kosice)			Within 6 km of the city	210699
			of Košice	240088
Spain				
Salamanca Project (Retortillo,	Mines and	Under Construction	Retortillo municipality	216
Alameda)	Processing plants			210
Mina Fe	Mine	Former (2000)	10km North of	154462
			Salamanca	134402
Elefante Plant	Heap leach plant	Former (1993)	Saelices el Chico	150
			township (Salamanca)	152
Quercus Plant	Heap/Dynamic	Former (2003)	Saelices el Chico	
	leach plant		township (Salamanca) ^b	
Andújar	Mill	Former (1981)	1.5 km south of Andújar	37975
La Haba	Mine	Former	Don Benito municipality	37011
South Africa				

Ezulwini-Cooke	Mines	Suspended as of 2017	Nearby towns include Randfontein and Westonaria; (Johannesburg is located 30-40km NE)	90751
Vaal River	Mines, Mill (gold; uranium by- product)	Active	Orkney	13435
Sweden				
Ranstadsverket	Mines	Former (1969)	Falköping municipality	33075
Russia				
Priargunsky	Mines	Active	Krasnokamensk	55666
Dalur	In-situ-leach		Uksyanskoye ^b	
Khiagda	In-situ-leach	Active	Bagdarin	4735
Gornoye	Mine, heap leach	Proposed	Unable to determine	
Olovskaya	Mine, heap leach	Proposed	Unable to determine	
Elkon	Mine, processing	Proposed	Unable to determine	
Lunnoye	Mine (gold; uranium)	Proposed	Unable to determine	
Ukraine			·	
Zheltye Vody	Mines and Mill	Active	Kirovograd	47509
Ingulskaya	Mine	Active	Loacted in southern neighborhood of Kirovograd; 22km away from Kropyvnytskyi	234322
Smolinskaya	Mine, heap leach	Active	Smolino (2km)	9800
Novokonstantinovskoye	Heap leach	Active	Kropyvnytskyi (27 km) ^b	
Safonovskoye	In-situ-leach	Former; Proposed re- opening	Unable to determine	
Pridniprovsky Chemical Plant	Mill	Former (1991)	Kamianske (formerly Dniprodzerzhynsk)	239237

Uzbekistan				
Kanimekh	In-situ-leach	Active	No known nearby cities	
			or towns	
Alendy	Mine, Mill	Active	No known nearby cities	
			or towns	
Aulbek	In-situ-leach	Active	No known nearby cities	
			or towns	
Meylisay and Tutlinskaya	In-situ-leach	Proposed	No known nearby cities	
ploshchad			or towns	
Northern mining district:	In-situ-leach	Active	Uchkuduk	28000
Uchkuduk, Kyndyk Tyube				20000
Central mining district:	In-situ-leach	Active	Zarafshan	68365
Sugraly				00505
Mining Directorate #5: North	In-situ-leach	Active	Unable to determine	
and South Bukinay, Beshkak,				
Istiklol, Kukhnur, Lyavlyakan,				
Tokhumbet, South Sugraly				
Southern mining district:	In-situ-leach	Active	Unable to determine	
Sabirsay, Ketmenchi,				
Jaarkuduk, Yogdu, Shark, Ulus				
Chauly	Mine	Former	Krasnogorsk	19176
Zambia	-			
Mutanga project	Heap leach	Proposed	31 km northwest of	58861
			Siavonga	50004
Lumwana project expansion	Heap leach	Proposed	Chirundu (26km)	47344
Total Estimated Population at	Risk from Existing S	Sites: 6,045,501		
Total Estimated Population at Risk from Proposed Sites: 363,767				

^aThis site shares the exposed population of Sofia with the Buhovo mine. The exposed population will only be counted once.

^{*b*} We were unable to determine the population size for this location.

^c*These sites share the exposed population of Ronneburg and Gera with the Lichtenberg mine. The exposed population will only be counted once.*

^{*d*} This site shares the exposed population of Oksemen with the Ulba Metallurgical Plant site. The exposed population will only be counted once. ^{*e*} Arlit, Niger is included in the TSIPs population estimates. The exposed population will only be counted once.

^{*f*} This site shares the exposed population of Akokan with the SOMAIR site. The exposed population will only be counted once.

Table 3c. US Sites

Site	State	Operating Status	Nearest Community	Estimated Population at Risk
Closed Uranium Sites U	nder the UMTRA Project			
Ambrosia Lake	NM	Former, site	Appx 25 miles north of	
(Phillips)		remediated	Grants, NM	
Belfield	ND	Former, site	Appx 1 mile SE of	1 012
		remediated	Belfield, ND	1,015
Bowman	ND	Former, site	Appx 7 miles NW of	1 712
		remediated	Bowman, ND	1,715
Durango	СО	Former, site	Appx 0.25 miles SW of	19 502
		remediated	Durango, CO	10,505
Edgemont	SD	Former, site	Appx 2 miles south	739
		remediated		
Falls City	ТХ	Former, site	Appx 8 miles SW of	656
		remediated	Falls City	030
Grand Junction	СО	Former, site	Site within city limits of	61 991
		remediated	Grand Junction	01,001
Green River	UT	Former, site	Appx 0.5 miles east of	
		remediated	the Green River; 1.5	052
			miles SE of Green River	952
			(city)	
Gunnison	СО	Former, site	Appx 0.5 miles SW of	6 261
		remediated	Gunnison	0,201
Lakeview	OR	Former, site	1.5 miles N-NW of	2 261
		remediated	Lakeview	2,261

Lowman	ID	Former, site	Appx 0.5 miles NE of	42
Maybell	СО	Former, site remediated	Appx 5 miles SW of Maybell	72
Mexican Hat	UT	Former, site remediated	Appx 1.5 miles SW of Mexican Hat and 1 mile South of San Juan River	31
Monument Valley	AZ	Former, site remediated	Located on the Navajo Reservation, about 15 miles South of Mexican Hat, UT	864
Naturita	СО	Former, site remediated	2 miles NW of Naturita	530
Rifle	со	Former, site remediated	Old Site: 0.3 miles East of Rifle; New Site (replaced old site in 1958): 2 miles SW of Rifle	9,665
Riverton	WY	Former, site remediated	2 miles SW of Riverton and within the boundaries of the Wind River Indian Reservation	10,997
Shiprock	NM	Former, site remediated	Site is within the Navajo Nation, near the town of Shiprock, appx 28 miles West of Farmington	8,156
Slick Rock	СО	Former, site remediated	Appx 22 miles north of Dove Creek, CO	129

Spook	WY	Former, site remediated	Appx 32 miles north of Glenrock, WY	2576
Tuba City	AZ	Former, site remediated	Site is within the Navajo Nation and close to the Hopi Reservation (Moenkopi, AZ), appx 5 miles East of Tuba City, AZ	10,448
Current and Planned US	S Mills			
Shootaring Canyon Uranium Mill	UT	Standby	A small town, Ticaboo, is located 2.6 miles south of the site	134
White Mesa Mill	UT	Operating - Processing Alternate Feed	Site located three miles North from the Ute Mountain Ute Tribe's White Mesa community and 6 miles south of Blanding, UT	4411
Sweetwater Uranium Project	WY	Standby	Site located 42 miles NW of Rawlins, WY. Other communities nearby include Wamsutter, Creston, Fort Steele, Muddy Gap, and and Rinerall to the south/SE of the site.	9,873
Pinon Ridge Mill	СО	Proposed *License has been pulled as of 04.18.18	Site was to be situated between Naturita and Paradox, CO	618

Current and Planned US	Heap Leach Plants					
Sheep Mountain	WY	Undeveloped	Site is located 8 miles south of Jeffrey City, Wyoming	58		
Current and Planned US	Current and Planned US In-situ-leach Plants					
Reno Creek	WY	Partially permitted and licensed	The project is less than 10 miles from the nearest town, Wright WY.	1,834		
Dewey Burdock Project	SD	Partially permitted and licensed	The project is located near the towns of Dewey and Burdock, SD	7		
Crow Butte Operation	NE	Operating	Site located 4 miles southeast of the city of Crawford	961		
Church Rock	NM	Partially permitted and licensed	Site is located near the city of Church Rock and appx 17 miles north of Gallup, NM	23,798		
Crownpoint	NM	Partially permitted and licensed	Site is located adjacent to the town limits of Crownpoint, NM	2,278		
Lost Creek Project	WY	Operating	Site is located 15 miles SW of Bairoil, WY and 38 miles NW of Rawlins, WY	9,179		
Alta Mesa Project	ТХ	Standby	Site is located appx 25 miles SW of Falfurrias, TX	4,981		
Smith Ranch-Highland	WY	Operating	Site is located appx 23	6,541		

Operation			miles NW of Douglas, WY and appx 14 miles	
Hobson ISR Plant	ТХ	Standby	Hobson, TX is the site of the plant. The site is located appx 3.4 miles SE of Falls City, TX and appx 7.6 miles NW of Karnes City, TX	4,076
La Palangana	ТХ	Standby	No known nearby communities	
Ross CPP	WY	Operating	No known nearby communities	1,834
Kingsville Dome	ТХ	Restoration	Site is appx 8 miles NW of Kingsville, TX	26,071
Rosita	ТХ	Reclamation	Unable to determine nearby communities	
Vasquez	ТХ	Restoration	Site near towns of Las Lomitas, Realitos, Hebbronville, and Bruni, TX	5,388
Nichols Ranch ISR Project	WY	Operating	Nearest city determined: Casper, WY (undetermined distance from site)	59,316
Goliad ISR Uranium Project	ТХ	Standby	Nearest city determined: Goliad, TX (undetermined distance from site)	1,981
Jab and Antelope	WY	Developing	Site is located appx 38 miles NW of Rawlins,	9,075

			WY	
Moore Ranch	WY	Permitted and	Site near Linch and	1 075
		Licensed	Wright, WY	1,875
Willow Creek Project	WY	Operating	Site near Sussex, WY	
Total Estimated Population at Risk from Existing sites: 270,401				
Total Estimated Population at Risk from Proposed sites: 39,543				

Table 3d. Canadian Sites

Site	Province	Operating Status	Nearest Community	Estimated Population at Risk
Canadian Uranium Operating Mines				
McClean Lake	Saskatchewan	Active	Nearest camp settlement is Points North Landing	0
Rabbit Lake	Saskatchewan	Suspended	Site is located appx 24 miles from Wollaston Lake (hamlet) and Wollaston Post (village)	1,350
McArthur Lake	Saskatchewan	Suspended as of January 2018	Site is located appx 31 miles from Wollaston Lake (hamlet) and Wollaston Post (village)	1,350
Key Lake	Saskatchewan	Suspended as of January 2018	Site is located 138 miles north of the	1,052

			village of Pinehouse		
Cigar Lake	Saskatchewan	Active	Nearest camp settlement is Points North Landing	est camp ment is Points 0 Landing	
Port Radium	Northwest Territories	Former	None		
Beaverlodge	Saskatchewan	Former	Site was in the community of Eldorado and was 4.3 miles East of Uranium City		
Cluff Lake	Saskatchewan	Former	None		
Elliot Lake	Ontario	Former	Nearest city is Elliot Lake	10,741	
Bancroft	Ontario	Former	Nearest city is Bancroft	3,881	
Midwest Project	Saskatchewan	Proposed	Nearest campsettlement is Points0North Landing		
Dawn Lake Millenium	Saskatchewan	Proposed	Site located 9 miles northwest of McClean Lake uranium mine and mill; nearest camp settlement to McClean Lake is Points North Landing; Unable to determine a population for the nearest settlement		
willenium	Saskatchewan	Proposed	miles north of the	1,052	

			village of Pinehouse	
Michelin	Labrador	Proposed	Site is located appx 25 miles SW of Postville	177
Wheeler River	Saskatchewan	Proposed	Site is located appx 27 miles SW of the McArthur River mine, which is located appx 31 miles from Wollaston Lake (hamlet) and Wollaston Post (village)	1,350
Uranium Fuel Cycle				
Blind River	Ontario	Active	Site is located just outside of Blind River, Ontario	3472
Port Hope	Ontario	Active	Site is located near the municipality of Port Hope, Ontario	16,753
Total Estimated Population at Risk from Existing Sites: 38,672				
Total Estimated Population at Risk from Proposed Sites: 2,579				

Table 4. Summary of Estimates

Site Source	Estimated At-Risk Population		Data Sources
TSIP	368,595		Pure Earth's TSIP Database ¹⁰
	Existing Sites	Proposed Sites	
Additional Global Sites	6,045,501	363,767	World Nuclear Association ¹¹
United States	267,825	39,543	World Nuclear Association ¹⁶
Canada	38,672	2,579	World Nuclear Association ¹⁵
Totals	6,351,998	405,889	

References

- 1. National Research Council, Committee on the Biological Effects of Ionizing Radiation. *Health Risks of Radon and Other Internally Deposited Alpha-Emitter: BEIR IV.* Washington, D.C.1988.
- 2. Zoellner T. *Uranium: War, Energy, and the Rock that Shaped the World.* New York, NY: Penguin Group; 2009.
- 3. Commission USNR. Stages of the Nuclear Fuel Cycle. 2017; <u>https://www.nrc.gov/materials/fuel-cycle-fac/stages-fuel-cycle.html</u>. Accessed May 21, 2018.
- 4. Landa E. *Isolation of uranium mill tailings and their component radionuclides from the biosphere--some Earth science perspectives.* United States Department of the Interior;1980.
- 5. Millard J, Gallaher B, Baggett D, Cary S. *The Church Rock Uranium Mill Tailings Spill: A Health and Environmental Assessment.* Santa Fe, NM: New Mexico Environmental Improvement Division, Health and Environment Department; September 1983.
- 6. World Nuclear Association. World Uranium Mining Production. 2016; <u>http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx</u>. Accessed July 14, 2016.
- 7. Nuclear Energy Institute. World Statistics. 2016; <u>http://www.nei.org/Knowledge-Center/Nuclear-Statistics/World-Statistics</u>.
- 8. World Uranium Mining Production. 2017; <u>http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx</u>. Accessed May 21, 2018.
- 9. Stegnar P, Shishkov I, Burkitbayev M, et al. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. *Journal of Environmental Radioactivity*. 2013;123:3-13.
- 10. Toxic Sites Identification Program Global Database: TSIP. Pure Earth; 2018. <u>http://www.contaminatedsites.org/TSIP/</u>. Accessed April 2, 2018.
- 11. Uranium Mining Overview. 2016; <u>http://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/uranium-mining-overview.aspx</u>. Accessed May 1 2018.
- 12. Case Studies. <u>https://greencross.ch/en/news-info-en/case-studies/</u>. Accessed March 1, 2018.
- 13. Uranium Mill Sites Under the UMTRA Project. <u>https://www.eia.gov/nuclear/umtra/</u>. Accessed May 1, 2018.
- 14. <u>https://www.energy.gov/lm/office-legacy-management</u>. Accessed May 1, 2018.
- 15. 2018. Uranium in Canada <u>http://world-nuclear.org/information-library/country-profiles/countries-a-f/canada-uranium.aspx</u>. Accessed May 1, 2018.
- 16. US Nuclear Fuel Cycle. 2018; <u>http://world-nuclear.org/information-library/country-profiles/countries-t-z/usa-nuclear-fuel-cycle.aspx</u>. Accessed May 31, 2018.
- 17. Uranium 2016: Resources, Production and Demand. Nuclear Energy Agency; International Atomic Energy Agency; 2016.
- 18. Radiation and Life. 2012; http://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-life.aspx. Accessed Mar 1, 2018.